Syndetics cover image
Image from Syndetics

The Definitive Guide to the ARM Cortex-M0 [electronic resource].

By: Material type: Computer fileComputer filePublisher number: 9780123854773Publication details: Burlington : Elsevier Science, 2011.ISBN:
  • 9780123854780
Subject(s): Genre/Form: Additional physical formats: Print version:: The Definitive Guide to the ARM Cortex-M0DDC classification:
  • 621.39/16 621.3916
LOC classification:
  • TK7895.E42 Y58 2010
Online resources:
Contents:
Front Cover; The Definitive Guide to the ARM Cortex-M0; Copyright; Contents; Foreword; Preface; Acknowledgments; Conventions; Terms and Abbreviations; Chapter 1 Introduction; Why Cortex-M0?; Application of the Cortex-M0 Processors; Background of ARM and ARM processors; Cortex-M0 Processor Specification and ARM Architecture; ARM Processors and the ARM Ecosystem; Getting Started with the Cortex-M0 Processor; Organization of This Book and Resources; Chapter 2 Cortex-M0 Technical Overview; General Information on the Cortex-M0 Processor; The ARM Cortex-M0 Processor Features
Advantages of the Cortex-M0 ProcessorLow-Power Applications; Cortex-M0 Software Portability; Chapter 3 Architecture; Overview; Programmer's Model; Memory System Overview; Stack Memory Operations; Exceptions and Interrupts; Nested Vectored Interrupt Controller (NVIC); System Control Block (SCB); Program Image and Startup Sequence; Chapter 4 Introduction to Cortex-M0 Programming; Introduction to Embedded System Programming; Inputs and Outputs; Development Flow; C Programming and Assembly Programming; What Is in a Program Image?; C Programming: Data Types; Accessing Peripherals in C
Chapter 10 Operating System Support FeaturesOverview of the OS Support Features; The SysTick Timer; SysTick Registers; Process Stack and Process Stack Pointer; SVC; PendSV; Chapter 11 Low-Power Features; Low-Power Embedded System Overview; Low-Power Advantages of the Cortex-M0 Processor; Overview of the Low-Power Features; Sleep Modes; Wait-for-Event (WFE) and Wait-for-Interrupt (WFI); Sleep-on-Exit Feature; Wakeup Interrupt Controller; Chapter 12 Fault Handling; Fault Exception Overview; Analyze a Fault; Accidental Switching to ARM State; Error Handling in Real Applications; Lockup
Cortex Microcontroller Software Interface Standard (CMSIS)Benefits of CMSIS; Chapter 5 Instruction Set; Background of ARM and Thumb Instruction Set; Assembly Basics; Pseudo Instructions; Chapter 6 Instruction Usage Examples; Overview; Program Control; Data Accesses; Data Type Conversion; Data Processing; Chapter 7 Memory System; Overview; Memory Map; Program Memory, Boot Loader, and Memory Remapping; Data Memory; Little Endian and Big Endian Support; Memory Attributes; Chapter 8 Exceptions and Interrupts; What Are Exceptions and Interrupts?; Exception Types on the Cortex-M0 Processor
Exception Priority DefinitionVector Table; Exception Sequence Overview; EXC_RETURN; Details of Exception Entry Sequence; Details of Exception Exit Sequence; Chapter 9 Interrupt Control and System Control; Overview of the NVIC and System Control Block Features; Interrupt Enable and Clear Enable; Interrupt Pending and Clear Pending; Interrupt Priority Level; Generic Assembly Code for Interrupt Control; Exception Masking Register (PRIMASK); Interrupt Inputs and Pending Behavior; Interrupt Latency; Control Registers for System Exceptions; System Control Registers
Preventing Lockup
Summary: * Provides engineers with a thorough understanding of how the architecture works by giving detailed information on the processor architecture, including programmer's model instruction set and interrupt handling * Many examples of programming the Cortex-M0, in both C language and assembly language, gives engineers the 'up-and-running' they are looking for, quickly * Information on the software development flow including examples from various development tools for optimum efficiency * Information regarding software porting from other processor architectures including othe
Holdings
Item type Home library Call number Status Date due Barcode Item holds
Electronic Resource Electronic Resource UH Online Library Ebooks Not for loan
Total holds: 0

Enhanced descriptions from Syndetics:

Description based upon print version of record.

Front Cover; The Definitive Guide to the ARM Cortex-M0; Copyright; Contents; Foreword; Preface; Acknowledgments; Conventions; Terms and Abbreviations; Chapter 1 Introduction; Why Cortex-M0?; Application of the Cortex-M0 Processors; Background of ARM and ARM processors; Cortex-M0 Processor Specification and ARM Architecture; ARM Processors and the ARM Ecosystem; Getting Started with the Cortex-M0 Processor; Organization of This Book and Resources; Chapter 2 Cortex-M0 Technical Overview; General Information on the Cortex-M0 Processor; The ARM Cortex-M0 Processor Features

Advantages of the Cortex-M0 ProcessorLow-Power Applications; Cortex-M0 Software Portability; Chapter 3 Architecture; Overview; Programmer's Model; Memory System Overview; Stack Memory Operations; Exceptions and Interrupts; Nested Vectored Interrupt Controller (NVIC); System Control Block (SCB); Program Image and Startup Sequence; Chapter 4 Introduction to Cortex-M0 Programming; Introduction to Embedded System Programming; Inputs and Outputs; Development Flow; C Programming and Assembly Programming; What Is in a Program Image?; C Programming: Data Types; Accessing Peripherals in C

Chapter 10 Operating System Support FeaturesOverview of the OS Support Features; The SysTick Timer; SysTick Registers; Process Stack and Process Stack Pointer; SVC; PendSV; Chapter 11 Low-Power Features; Low-Power Embedded System Overview; Low-Power Advantages of the Cortex-M0 Processor; Overview of the Low-Power Features; Sleep Modes; Wait-for-Event (WFE) and Wait-for-Interrupt (WFI); Sleep-on-Exit Feature; Wakeup Interrupt Controller; Chapter 12 Fault Handling; Fault Exception Overview; Analyze a Fault; Accidental Switching to ARM State; Error Handling in Real Applications; Lockup

Cortex Microcontroller Software Interface Standard (CMSIS)Benefits of CMSIS; Chapter 5 Instruction Set; Background of ARM and Thumb Instruction Set; Assembly Basics; Pseudo Instructions; Chapter 6 Instruction Usage Examples; Overview; Program Control; Data Accesses; Data Type Conversion; Data Processing; Chapter 7 Memory System; Overview; Memory Map; Program Memory, Boot Loader, and Memory Remapping; Data Memory; Little Endian and Big Endian Support; Memory Attributes; Chapter 8 Exceptions and Interrupts; What Are Exceptions and Interrupts?; Exception Types on the Cortex-M0 Processor

Exception Priority DefinitionVector Table; Exception Sequence Overview; EXC_RETURN; Details of Exception Entry Sequence; Details of Exception Exit Sequence; Chapter 9 Interrupt Control and System Control; Overview of the NVIC and System Control Block Features; Interrupt Enable and Clear Enable; Interrupt Pending and Clear Pending; Interrupt Priority Level; Generic Assembly Code for Interrupt Control; Exception Masking Register (PRIMASK); Interrupt Inputs and Pending Behavior; Interrupt Latency; Control Registers for System Exceptions; System Control Registers

Preventing Lockup

* Provides engineers with a thorough understanding of how the architecture works by giving detailed information on the processor architecture, including programmer's model instruction set and interrupt handling * Many examples of programming the Cortex-M0, in both C language and assembly language, gives engineers the 'up-and-running' they are looking for, quickly * Information on the software development flow including examples from various development tools for optimum efficiency * Information regarding software porting from other processor architectures including othe